Quantifying the performance of garbage collection vs. explicit memory management

Author:

Hertz Matthew1,Berger Emery D.2

Affiliation:

1. Canisius College, Buffalo, NY

2. University of Massachusetts - Amherst, Amherst, MA

Abstract

Garbage collection yields numerous software engineering benefits, but its quantitative impact on performance remains elusive. One can compare the cost of conservative garbage collection to explicit memory management in C/C++ programs by linking in an appropriate collector. This kind of direct comparison is not possible for languages designed for garbage collection (e.g., Java), because programs in these languages naturally do not contain calls to free. Thus, the actual gap between the time and space performance of explicit memory management and precise , copying garbage collection remains unknown.We introduce a novel experimental methodology that lets us quantify the performance of precise garbage collection versus explicit memory management. Our system allows us to treat unaltered Java programs as if they used explicit memory management by relying on oracles to insert calls to free. These oracles are generated from profile information gathered in earlier application runs. By executing inside an architecturally-detailed simulator, this "oracular" memory manager eliminates the effects of consulting an oracle while measuring the costs of calling malloc and free. We evaluate two different oracles: a liveness-based oracle that aggressively frees objects immediately after their last use, and a reachability-based oracle that conservatively frees objects just after they are last reachable. These oracles span the range of possible placement of explicit deallocation calls.We compare explicit memory management to both copying and non-copying garbage collectors across a range of benchmarks using the oracular memory manager, and present real (non-simulated) runs that lend further validity to our results. These results quantify the time-space tradeoff of garbage collection: with five times as much memory, an Appel-style generational collector with a non-copying mature space matches the performance of reachability-based explicit memory management. With only three times as much memory, the collector runs on average 17% slower than explicit memory management. However, with only twice as much memory, garbage collection degrades performance by nearly 70%. When physical memory is scarce, paging causes garbage collection to run an order of magnitude slower than explicit memory management.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference59 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heap Size Adjustment with CPU Control;Proceedings of the 20th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes;2023-10-19

2. Adapting Kubernetes controllers to the edge: on-demand control planes using Wasm and WASI;2022 IEEE 11th International Conference on Cloud Networking (CloudNet);2022-11-07

3. Optimal heap limits for reducing browser memory use;Proceedings of the ACM on Programming Languages;2022-10-31

4. Distilling the Real Cost of Production Garbage Collectors;2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2022-05

5. Machine-Learning Based Memory Prediction Model for Data Parallel Workloads in Apache Spark;Symmetry;2021-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3