Machine-Learning Based Memory Prediction Model for Data Parallel Workloads in Apache Spark

Author:

Myung RohyoungORCID,Choi Sukyong

Abstract

A lack of memory can lead to job failures or increase processing times for garbage collection. However, if too much memory is provided, the processing time is only marginally reduced, and most of the memory is wasted. Many big data processing tasks are executed in cloud environments. When renting virtual resources in a cloud environment, it is necessary to pay the cost according to the specifications of resources (i.e., the number of virtual cores and the size of memory), as well as rental time. In this paper, given the type of workload and volume of the input data, we analyze the memory usage pattern and derive the efficient memory size of data-parallel workloads in Apache Spark. Then, we propose a machine-learning-based prediction model that determines the efficient memory for a given workload and data. To determine the validity of the proposed model, we applied it to data-parallel workloads which include a deep learning model. The predicted memory values were in close agreement with the actual amount of required memory. Additionally, the whole building time for the proposed model requires a maximum of 44% of the total execution time of a data-parallel workload. The proposed model can improve memory efficiency up to 1.89 times compared with the vanilla Spark setting.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial

2. MapReduce

3. Apache Spark

4. Mllib: Machine learning in apache Spark;Meng;J. Mach. Learn. Res.,2016

5. Discretized streams: Fault-tolerant streaming computation at scale;Zaharia,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3