Improving virtual machine performance using a cross-run profile repository

Author:

Arnold Matthew1,Welc Adam2,Rajan V. T.1

Affiliation:

1. IBM T.J. Watson Research Center

2. Purdue University and IBM T.J. Watson Research Center

Abstract

Virtual machines for languages such as the Java programming language make extensive use of online profiling and dynamic optimization to improve program performance. But despite the important role that profiling plays in achieving high performance, current virtual machines discard a program's profile data at the end of execution, wasting the opportunity to use past knowledge to improve future performance. In this paper, we present a fully automated architecture for exploiting cross-run profile data in virtual machines. Our work addresses a number of challenges that previously limited the practicality of such an approach.We apply this architecture to address the problem of selective optimization , and describe our implementation in IBM's J9 Java virtual machine. Our results demonstrate substantial performance improvements on a broad suite of Java programs, with the average performance ranging from 8.8% -- 16.6% depending on the execution scenario.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatically Generated Supernodes for AST Interpreters Improve Virtual-Machine Performance;Proceedings of the 22nd ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences;2023-10-22

2. Reusing Just-in-Time Compiled Code;Proceedings of the ACM on Programming Languages;2023-10-16

3. HHVM Jump-Start: Boosting Both Warmup and Steady-State Performance at Scale;2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2021-02-27

4. Exploring Impact of Profile Data on Code Quality in the HotSpot JVM;ACM Transactions on Embedded Computing Systems;2020-11-30

5. PAYJIT: space-optimal JIT compilation and its practical implementation;Proceedings of the 27th International Conference on Compiler Construction;2018-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3