Reusing Just-in-Time Compiled Code

Author:

Mehta Meetesh Kalpesh1ORCID,Krynski Sebastián2ORCID,Gualandi Hugo Musso2ORCID,Thakur Manas3ORCID,Vitek Jan4ORCID

Affiliation:

1. Indian Institute of Technology Mandi, Mandi, India

2. Czech Technical University in Prague, Prague, Czechia

3. Indian Institute of Technology Bombay, Mumbai, India

4. Northeastern University, Boston, USA

Abstract

Most code is executed more than once. If not entire programs then libraries remain unchanged from one run to the next. Just-in-time compilers expend considerable effort gathering insights about code they compiled many times, and often end up generating the same binary over and over again. We explore how to reuse compiled code across runs of different programs to reduce warm-up costs of dynamic languages. We propose to use speculative contextual dispatch to select versions of functions from an off-line curated code repository . That repository is a persistent database of previously compiled functions indexed by the context under which they were compiled. The repository is curated to remove redundant code and to optimize dispatch. We assess practicality by extending Ř, a compiler for the R language, and evaluating its performance. Our results suggest that the approach improves warmup times while preserving peak performance.

Funder

NSF grants

GA?R EXPRO grant

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference23 articles.

1. Improving virtual machine performance using a cross-run profile repository

2. R melts brains: an IR for first-class environments and lazy effectful arguments

3. Contextual dispatch for function specialization

4. Deoptless: speculation with dispatched on-stack replacement and specialized continuations

5. Michael Hahsler . 2022 . Recommenderlab: An R framework for developing and testing recommendation algorithms. arXiv:2205.12371 [cs.IR]. May, https://doi.org/10.48550/ARXIV.2205.12371 10.48550/ARXIV.2205.12371 Michael Hahsler. 2022. Recommenderlab: An R framework for developing and testing recommendation algorithms. arXiv:2205.12371 [cs.IR]. May, https://doi.org/10.48550/ARXIV.2205.12371

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3