Revealing Cluster Hierarchy in Gate-level ICs Using Block Diagrams and Cluster Estimates of Circuit Embeddings

Author:

Cakir Burcin1,Malik Sharad1

Affiliation:

1. Princeton University, Princeton, NJ, USA

Abstract

Contemporary integrated circuits (ICs) are increasingly being constructed using intellectual property blocks (IPs) obtained from third parties in a globalized supply chain. The increased vulnerability to adversarial changes during this untrusted supply chain raises concerns about the integrity of the end product. The difference in the levels of abstraction between the initial specification and the final available circuit design poses a challenge for analyzing the final circuit for malicious insertions. Reverse engineering presents one way to help reduce the difficulty of circuit analysis and inspection. In this work, we provide a framework that given (i) a gate-level netlist of a design and (ii) a block diagram for the design with relative sizes of the blocks, outputs a matching between the partitions of the circuit and blocks in the block diagram. We first compute a geometric embedding for each node in the circuit and then apply a clustering algorithm on the embedding features to obtain circuit partitions. Each partition is then mapped to the high-level blocks in the block diagram. These partitions can then be further analyzed for malicious insertions with much reduced complexity in comparison with the full chip. We tested our algorithm on different designs with varying sizes to evaluate the efficacy of algorithm, including the open-source processor OpenSparc T1, and showed that we can successfully match over 90% of gates to their corresponding blocks.

Funder

SRC STARNet

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reverse Engineering of RTL Controllers from Look-Up Table Netlists;2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI);2023-06-20

2. Word-Level Structure Identification In FPGA Designs Using Cell Proximity Information;2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID);2023-01

3. Open Source Hardware Design and Hardware Reverse Engineering: A Security Analysis;2022 25th Euromicro Conference on Digital System Design (DSD);2022-08

4. Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs;2022 Design, Automation & Test in Europe Conference & Exhibition (DATE);2022-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3