Exploiting Partial Runtime Reconfiguration for High-Performance Reconfigurable Computing

Author:

El-Araby Esam1,Gonzalez Ivan1,El-Ghazawi Tarek1

Affiliation:

1. George Washington University

Abstract

Runtime Reconfiguration (RTR) has been traditionally utilized as a means for exploiting the flexibility of High-Performance Reconfigurable Computers (HPRCs). However, the RTR feature comes with the cost of high configuration overhead which might negatively impact the overall performance. Currently, modern FPGAs have more advanced mechanisms for reducing the configuration overheads, particularly Partial Runtime Reconfiguration (PRTR). It has been perceived that PRTR on HPRC systems can be the trend for improving the performance. In this work, we will investigate the potential of PRTR on HPRC by formally analyzing the execution model and experimentally verifying our analytical findings by enabling PRTR for the first time, to the best of our knowledge, on one of the current HPRC systems, Cray XD1. Our approach is general and can be applied to any of the available HPRC systems. The paper will conclude with recommendations and conditions, based on our conceptual and experimental work, for the optimal utilization of PRTR as well as possible future usage in HPRC.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3