SPECTR

Author:

Rahmani Amir M.1,Donyanavard Bryan2,Mück Tiago2,Moazzemi Kasra2,Jantsch Axel3,Mutlu Onur4,Dutt Nikil2

Affiliation:

1. University of California, Irvine&TU Wien, Irvine, CA, USA

2. University of California, Irvine, Irvine, CA, USA

3. TU Wien, Vienna, Austria

4. ETH Zurich, Zurich, Switzerland

Abstract

Resource management strategies for many-core systems need to enable sharing of resources such as power, processing cores, and memory bandwidth while coordinating the priority and significance of system- and application-level objectives at runtime in a scalable and robust manner. State-of-the-art approaches use heuristics or machine learning for resource management, but unfortunately lack formalism in providing robustness against unexpected corner cases. While recent efforts deploy classical control-theoretic approaches with some guarantees and formalism, they lack scalability and autonomy to meet changing runtime goals. We present SPECTR, a new resource management approach for many-core systems that leverages formal supervisory control theory (SCT) to combine the strengths of classical control theory with state-of-the-art heuristic approaches to efficiently meet changing runtime goals. SPECTR is a scalable and robust control architecture and a systematic design flow for hierarchical control of many-core systems. SPECTR leverages SCT techniques such as gain scheduling to allow autonomy for individual controllers. It facilitates automatic synthesis of the high-level supervisory controller and its property verification. We implement SPECTR on an Exynos platform containing ARM»s big.LITTLE-based heterogeneous multi-processor (HMP) and demonstrate that SPECTR»s use of SCT is key to managing multiple interacting resources (e.g., chip power and processing cores) in the presence of competing objectives (e.g., satisfying QoS vs. power capping). The principles of SPECTR are easily applicable to any resource type and objective as long as the management problem can be modeled using dynamical systems theory (e.g., difference equations), discrete-event dynamic systems, or fuzzy dynamics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GOAL: Supporting General and Dynamic Adaptation in Computing Systems;Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2022-11-29

2. Protecting adaptive sampling from information leakage on low-power sensors;Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2022-02-22

3. Modeling and control of heterogeneous field robots under partial observation;Information Sciences;2021-11

4. Control inteligente mediante escalado dinámico voltaje-frecuencia (DVFS) de la temperatura en procesadores embebidos;Revista Iberoamericana de Automática e Informática industrial;2021-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3