Garbage collection and local variable type-precision and liveness in Java virtual machines

Author:

Agesen Ole1,Detlefs David1,Moss J. Eliot2

Affiliation:

1. Sun Microsystems Laboratories, 2 Elizabeth Drive, Chelmsford, MA

2. Department of Computer Science, University of Massachusetts, Amherst, MA

Abstract

Full precision in garbage collection implies retaining only those heap allocated objects that will actually be used in the future. Since full precision is not computable in general, garbage collectors use safe (i.e., conservative) approximations such as reachability from a set of root references. Ambiguous roots collectors (commonly called "conservative") can be overly conservative because they overestimate the root set, and thereby retain unexpectedly large amounts of garbage. We consider two more precise collection schemes for Java virtual machines (JVMs). One uses a type analysis to obtain a type-precise root set (only those variables that contain references); the other adds a live variable analysis to reduce the root set to only the live reference variables. Even with the Java programming language's strong typing, it turns out that the JVM specification has a feature that makes type-precise root sets difficult to compute. We explain the problem and ways in which it can be solved.Our experimental results include measurements of the costs of the type and liveness analyses at load time, of the incremental benefits at run time of the liveness analysis over the type analysis alone, and of various map sizes and counts. We find that the liveness analysis often produces little or no improvement in heap size, sometimes modest improvements, and occasionally the improvement is dramatic. While further study is in order, we conclude that the main benefit of the liveness analysis is preventing bad surprises.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast conservative garbage collection;ACM SIGPLAN Notices;2014-12-31

2. Elephant tracks;ACM SIGPLAN Notices;2013-12-04

3. Cache-Conscious Wavefront Scheduling;2012 45th Annual IEEE/ACM International Symposium on Microarchitecture;2012-12

4. Adding dynamically-typed language support to a statically-typed language compiler;ACM SIGPLAN Notices;2012-09-05

5. A Compilation Framework for the Automatic Restructuring of Pointer-Linked Data Structures;High-Performance Scientific Computing;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3