Adding dynamically-typed language support to a statically-typed language compiler

Author:

Ishizaki Kazuaki1,Ogasawara Takeshi1,Castanos Jose2,Nagpurkar Priya2,Edelsohn David2,Nakatani Toshio1

Affiliation:

1. IBM Research - Tokyo, Yamato, Japan

2. IBM Thomas J. Watson Research Center, Yorktown heights, NY, USA

Abstract

Applications written in dynamically typed scripting languages are increasingly popular for Web software development. Even on the server side, programmers are using dynamically typed scripting languages such as Ruby and Python to build complex applications quickly. As the number and complexity of dynamically typed scripting language applications grows, optimizing their performance is becoming important. Some of the best performing compilers and optimizers for dynamically typed scripting languages are developed entirely from scratch and target a specific language. This approach is not scalable, given the variety of dynamically typed scripting languages, and the effort involved in developing and maintaining separate infrastructures for each. In this paper, we evaluate the feasibility of adapting and extending an existing production-quality method-based Just-In-Time (JIT) compiler for a language with dynamic types. Our goal is to identify the challenges and shortcomings with the current infrastructure, and to propose and evaluate runtime techniques and optimizations that can be incorporated into a common optimization infrastructure for static and dynamic languages. We discuss three extensions to the compiler to support dynamically typed languages: (1) simplification of control flow graphs, (2) mapping of memory locations to stack-allocated variables, and (3) reduction of runtime overhead using language semantics. We also propose four new optimizations for Python in (2) and (3). These extensions are effective in reduction of compiler working memory and improvement of runtime performance. We present a detailed performance evaluation of our approach for Python, finding an overall improvement of 1.69x on average (up to 2.74x) over our JIT compiler without any optimization for dynamically typed languages and Python.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An object model for dynamic mixins;Computer Languages, Systems & Structures;2018-01

2. An object model for a dynamic mixin based language;Proceedings of the 31st Annual ACM Symposium on Applied Computing;2016-04-04

3. Approaches to interpreter composition;Computer Languages, Systems & Structures;2015-12

4. Establishing Operational Models for Dynamic Compilation in a Simulation Platform;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2015

5. Efficient hosted interpreters on the JVM;ACM Transactions on Architecture and Code Optimization;2014-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3