Data transformations for eliminating conflict misses

Author:

Rivera Gabriel1,Tseng Chau-Wen1

Affiliation:

1. Department of Computer Science, University of Maryland, College Park, MD

Abstract

Many cache misses in scientific programs are due to conflicts caused by limited set associativity. We examine two compile-time data-layout transformations for eliminating conflict misses, concentrating on misses occuring on every loop iteration. Inter-variable padding adjusts variable base addresses, while intra-variable padding modifies array dimension sizes. Two levels of precision are evaluated. PADLITE only uses array and column dimension sizes, relying on assumptions about common array reference patterns. PAD analyzes programs, detecting conflict misses by linearizing array references and calculating conflict distances between uniformly-generated references. The Euclidean algorithm for computing the gcd of two numbers is used to predict conflicts between different array columns for linear algebra codes. Experiments on a range of programs indicate PADLITE can eliminate conflicts for benchmarks, but PAD is more effective over a range of cache and problem sizes. Padding reduces cache miss rates by 16% on average for a 16K direct-mapped cache. Execution times are reduced by 6% on average, with some SPEC95 programs improving up to 15%.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Image Size Padding for Load Balancing in System-on-Chip Memory Hierarchy;Electronics;2023-08-09

2. Distance-in-time versus distance-in-space;Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2021-06-18

3. Assessing the effect of data transformations on test suite compilation;Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement;2018-10-11

4. Taxonomy of Vectorization Patterns of Programming for FIR Image Filters Using Kernel Subsampling and New One;Applied Sciences;2018-07-26

5. Investigating Data Layout Transformations in Chapel;2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3