Diversity, Serendipity, Novelty, and Coverage

Author:

Kaminskas Marius1,Bridge Derek1

Affiliation:

1. Insight Centre for Data Analytics, University College Cork, Ireland

Abstract

What makes a good recommendation or good list of recommendations? Research into recommender systems has traditionally focused on accuracy, in particular how closely the recommender’s predicted ratings are to the users’ true ratings. However, it has been recognized that other recommendation qualities—such as whether the list of recommendations is diverse and whether it contains novel items—may have a significant impact on the overall quality of a recommender system. Consequently, in recent years, the focus of recommender systems research has shifted to include a wider range of “beyond accuracy” objectives. In this article, we present a survey of the most discussed beyond-accuracy objectives in recommender systems research: diversity, serendipity, novelty, and coverage. We review the definitions of these objectives and corresponding metrics found in the literature. We also review works that propose optimization strategies for these beyond-accuracy objectives. Since the majority of works focus on one specific objective, we find that it is not clear how the different objectives relate to each other. Hence, we conduct a set of offline experiments aimed at comparing the performance of different optimization approaches with a view to seeing how they affect objectives other than the ones they are optimizing. We use a set of state-of-the-art recommendation algorithms optimized for recall along with a number of reranking strategies for optimizing the diversity, novelty, and serendipity of the generated recommendations. For each reranking strategy, we measure the effects on the other beyond-accuracy objectives and demonstrate important insights into the correlations between the discussed objectives. For instance, we find that rating-based diversity is positively correlated with novelty, and we demonstrate the positive influence of novelty on recommendation coverage.

Funder

Science Foundation Ireland

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference91 articles.

1. On Unexpectedness in Recommender Systems

2. Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques

3. Diversifying search results

4. Chris Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of More. Chris Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of More.

Cited by 270 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards long-term depolarized interactive recommendations;Information Processing & Management;2024-11

2. MOREM: An evolutionary multitasking optimization algorithm for multi-objective recommendations;Information Sciences;2024-09

3. A Deep Learning Model for Cross-Domain Serendipity Recommendations;ACM Transactions on Recommender Systems;2024-08-29

4. Hybrid music recommendation with graph neural networks;User Modeling and User-Adapted Interaction;2024-08-24

5. Optimizing Novelty of Top-k Recommendations using Large Language Models and Reinforcement Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3