Hybrid music recommendation with graph neural networks

Author:

Bevec Matej,Tkalčič Marko,Pesek Matevž

Abstract

AbstractModern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3