Author:
Bevec Matej,Tkalčič Marko,Pesek Matevž
Abstract
AbstractModern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.
Publisher
Springer Science and Business Media LLC