Adversarial Specification Mining

Author:

Kang Hong Jin1,Lo David1

Affiliation:

1. School of Information Systems, Singapore Management University, Singapore

Abstract

There have been numerous studies on mining temporal specifications from execution traces. These approaches learn finite-state automata (FSA) from execution traces when running tests. To learn accurate specifications of a software system, many tests are required. Existing approaches generalize from a limited number of traces or use simple test generation strategies. Unfortunately, these strategies may not exercise uncommon usage patterns of a software system. To address this problem, we propose a new approach, adversarial specification mining, and develop a prototype, Diversity through Counter-examples (DICE). DICE has two components: DICE-Tester and DICE-Miner. After mining Linear Temporal Logic specifications from an input test suite, DICE-Tester adversarially guides test generation, searching for counterexamples to these specifications to invalidate spurious properties. These counterexamples represent gaps in the diversity of the input test suite. This process produces execution traces of usage patterns that were unrepresented in the input test suite. Next, we propose a new specification inference algorithm, DICE-Miner, to infer FSAs using the traces, guided by the temporal specifications. We find that the inferred specifications are of higher quality than those produced by existing state-of-the-art specification miners. Finally, we use the FSAs in a fuzzer for servers of stateful protocols, increasing its coverage.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Requirements Engineering for Trustworthy Human-AI Synergy in Software Engineering 2.0;2024 IEEE 32nd International Requirements Engineering Conference (RE);2024-06-24

2. SpecBCFuzz: Fuzzing LTL Solvers with Boundary Conditions;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

3. Enchanting Program Specification Synthesis by Large Language Models Using Static Analysis and Program Verification;Lecture Notes in Computer Science;2024

4. PURLTL: Mining LTL Specification from Imperfect Traces in Testing;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

5. PPTL specification mining based on LNFG;Theoretical Computer Science;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3