Adaptive backoff synchronization techniques

Author:

Agarwal A.1,Cherian M.1

Affiliation:

1. Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA

Abstract

Shared-memory multiprocessors commonly use shared variables for synchronization. Our simulations of real parallel applications show that large-scale cache-coherent multiprocessors suffer significant amounts of invalidation traffic due to synchronization. Large multiprocessors that do not cache synchronization variables are often more severely impacted. If this synchronization traffic is not reduced or managed adequately, synchronization references can cause severe congestion in the network. We propose a class of adaptive back-off methods that do not use any extra hardware and can significantly reduce the memory traffic to synchronization variables. These methods use synchronization state to reduce polling of synchronization variables. Our simulations show that when the number of processors participating in a barrier synchronization is small compared to the time of arrival of the processors, reductions of 20 percent to over 95 percent in synchronization traffic can be achieved at no extra cost. In other situations adaptive backoff techniques result in a tradeoff between reduced network accesses and increased processor idle time.

Publisher

Association for Computing Machinery (ACM)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CLoF;Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles CD-ROM;2021-10-26

2. Power-aware pipelining with automatic concurrency control;Concurrency and Computation: Practice and Experience;2018-08-14

3. Lock Cohorting;ACM Transactions on Parallel Computing;2015-02-18

4. Effective Barrier Synchronization on Intel Xeon Phi Coprocessor;Lecture Notes in Computer Science;2015

5. Lock cohorting;ACM SIGPLAN Notices;2012-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3