Lock Cohorting

Author:

Dice David1,Marathe Virendra J.1,Shavit Nir2

Affiliation:

1. Oracle Labs

2. MIT

Abstract

Multicore machines are quickly shifting to NUMA and CC-NUMA architectures, making scalable NUMA-aware locking algorithms, ones that take into account the machine's nonuniform memory and caching hierarchy, ever more important. This article presents lock cohorting , a general new technique for designing NUMA-aware locks that is as simple as it is powerful. Lock cohorting allows one to transform any spin-lock algorithm, with minimal nonintrusive changes,into a scalable NUMA-aware spin-lock. Our new cohorting technique allows us to easily create NUMA-aware versions of the TATAS-Backoff, CLH, MCS, and ticket locks, to name a few. Moreover, it allows us to derive a CLH-based cohort abortable lock, the first NUMA-aware queue lock to support abortability. We empirically compared the performance of cohort locks with prior NUMA-aware and classic NUMA-oblivious locks on a synthetic micro-benchmark, a real world key-value store application memcached, as well as the libc memory allocator. Our results demonstrate that cohort locks perform as well or better than known locks when the load is low and significantly out-perform them as the load increases.

Funder

Intel

DoE ASCR

NSF

Oracle

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Adaptive Locking Mechanism for High Performance Computing;2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2023-05-12

2. A NUMA-Aware Recoverable Mutex Lock;Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures;2022-07-11

3. Core-aware combining: Accelerating critical section execution on heterogeneous multi-core systems via combining synchronization;Journal of Parallel and Distributed Computing;2022-04

4. Nap: Persistent Memory Indexes for NUMA Architectures;ACM Transactions on Storage;2022-01-29

5. FTSD;Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems;2021-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3