TagRec

Author:

Trattner Christoph1,Kowald Dominik2,Lacic Emanuel2

Affiliation:

1. Norwegian University of Science and Technology, Trondheim

2. Know-Center & Graz University of Technology, Austria

Abstract

This article presents TagRec , a framework to foster reproducible evaluation and development of recommender algorithms based on folksonomy data. The purpose of TagRec is to provide the research community with a standardised framework that supports all steps of the development process and the evaluation of tag-based recommendation algorithms in a reproducible way, including methods for data pre-processing, data modeling and recommender evaluation. TagRec currently contains 32 state-of-the-art algorithms for tag and item prediction, including a set of novel and very efficient algorithms based on the human cognition theories ACT-R and MINERVA2. The framework should be relevant for researchers, teachers, students and developers working on recommender systems and predictive modeling in general and those interested in tag-based recommender algorithms in particular.

Funder

State of Styria

Austrian Ministry of Transport, Innovation and Technology

Austrian Ministry of Economics and Labor

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transparent Music Preference Modeling and Recommendation with a Model of Human Memory Theory;Human–Computer Interaction Series;2024

2. Overview of an Approach on Utilizing Trust and Provenance Metrics Combined with Social Network Metrics on Recommender Systems;Trends and Innovations in Information Systems and Technologies;2020

3. VizRec;ACM Transactions on Interactive Intelligent Systems;2016-12-26

4. The Influence of Frequency, Recency and Semantic Context on the Reuse of Tags in Social Tagging Systems;Proceedings of the 27th ACM Conference on Hypertext and Social Media;2016-07-10

5. Performance evaluation of recommendation algorithms on Internet of Things services;Physica A: Statistical Mechanics and its Applications;2016-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3