Affiliation:
1. Know Center GmbH
2. National University of Cuyo
3. Norwegian University of Science and Technology
Abstract
Visualizations have a distinctive advantage when dealing with the information overload problem: Because they are grounded in basic visual cognition, many people understand them. However, creating proper visualizations requires specific expertise of the domain and underlying data. Our quest in this article is to study methods to suggest appropriate visualizations autonomously. To be appropriate, a visualization has to follow known guidelines to find and distinguish patterns visually and encode data therein. A visualization tells a story of the underlying data; yet, to be appropriate, it has to clearly represent those aspects of the data the viewer is interested in. Which aspects of a visualization are important to the viewer? Can we capture and use those aspects to recommend visualizations? This article investigates strategies to recommend visualizations considering different aspects of user preferences. A multi-dimensional scale is used to estimate aspects of quality for visualizations for collaborative filtering. Alternatively, tag vectors describing visualizations are used to recommend potentially interesting visualizations based on content. Finally, a hybrid approach combines information on what a visualization is about (tags) and how good it is (ratings). We present the design principles behind
VizRec
, our visual recommender. We describe its architecture, the data acquisition approach with a crowd sourced study, and the analysis of strategies for visualization recommendation.
Funder
CONICET
EC 7th Framework project EEXCESS
Austrian Research Promotion Agency
European Horizon 2020 research project AFEL
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献