New Constructive Aspects of the Lovász Local Lemma

Author:

Haeupler Bernhard1,Saha Barna2,Srinivasan Aravind3

Affiliation:

1. Massachusetts Institute of Technology

2. AT&T Shannon Research Laboratory

3. University of Maryland College Park

Abstract

The Lovász Local Lemma (LLL) is a powerful tool that gives sufficient conditions for avoiding all of a given set of “bad” events, with positive probability. A series of results have provided algorithms to efficiently construct structures whose existence is non-constructively guaranteed by the LLL, culminating in the recent breakthrough of Moser and Tardos [2010] for the full asymmetric LLL. We show that the output distribution of the Moser-Tardos algorithm well-approximates the conditional LLL-distribution , the distribution obtained by conditioning on all bad events being avoided. We show how a known bound on the probabilities of events in this distribution can be used for further probabilistic analysis and give new constructive and nonconstructive results. We also show that when a LLL application provides a small amount of slack, the number of resamplings of the Moser-Tardos algorithm is nearly linear in the number of underlying independent variables (not events!), and can thus be used to give efficient constructions in cases where the underlying proof applies the LLL to super-polynomially many events. Even in cases where finding a bad event that holds is computationally hard, we show that applying the algorithm to avoid a polynomial-sized “core” subset of bad events leads to a desired outcome with high probability. This is shown via a simple union bound over the probabilities of non-core events in the conditional LLL-distribution, and automatically leads to simple and efficient Monte-Carlo (and in most cases RNC ) algorithms. We demonstrate this idea on several applications. We give the first constant-factor approximation algorithm for the Santa Claus problem by making a LLL-based proof of Feige constructive. We provide Monte Carlo algorithms for acyclic edge coloring, nonrepetitive graph colorings, and Ramsey-type graphs. In all these applications, the algorithm falls directly out of the non-constructive LLL-based proof. Our algorithms are very simple, often provide better bounds than previous algorithms, and are in several cases the first efficient algorithms known. As a second type of application we show that the properties of the conditional LLL-distribution can be used in cases beyond the critical dependency threshold of the LLL: avoiding all bad events is impossible in these cases. As the first (even nonconstructive) result of this kind, we show that by sampling a selected smaller core from the LLL-distribution, we can avoid a fraction of bad events that is higher than the expectation. MAX k -SAT is an illustrative example of this.

Funder

Division of Computing and Communication Foundations

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on the k-restriction problem;Information Processing Letters;2025-01

2. Towards derandomising Markov chain Monte Carlo;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

3. Deterministic algorithms for the Lovász local lemma: Simpler, more general, and more parallel;Random Structures & Algorithms;2023-04-15

4. Multistage online maxmin allocation of indivisible entities;Theoretical Computer Science;2022-10

5. Sampling Lovász local lemma for general constraint satisfaction solutions in near-linear time;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3