Capturing Subjective First-Person View Shots with Drones for Automated Cinematography

Author:

Ashtari Amirsaman1ORCID,Stevšić Stefan2,Nägeli Tobias2,Bazin Jean-Charles3,Hilliges Otmar2ORCID

Affiliation:

1. Visual Media Lab, KAIST and AIT Lab, ETH Zürich, Yuseong-gu, Daejeon

2. AIT Lab, ETH Zürich, Switzerland

3. KAIST, South Korea

Abstract

We propose an approach to capture subjective first-person view (FPV) videos by drones for automated cinematography. FPV shots are intentionally not smooth to increase the level of immersion for the audience, and are usually captured by a walking camera operator holding traditional camera equipment. Our goal is to automatically control a drone in such a way that it imitates the motion dynamics of a walking camera operator, and, in turn, capture FPV videos. For this, given a user-defined camera path, orientation, and velocity, we first present a method to automatically generate the operator’s motion pattern and the associated motion of the camera, considering the damping mechanism of the camera equipment. Second, we propose a general computational approach that generates the drone commands to imitate the desired motion pattern. We express this task as a constrained optimization problem, where we aim to fulfill high-level user-defined goals, while imitating the dynamics of the walking camera operator and taking the drone’s physical constraints into account. Our approach is fully automatic, runs in real time, and is interactive, which provides artistic freedom in designing shots. It does not require a motion capture system, and works both indoors and outdoors. The validity of our approach has been confirmed via quantitative and qualitative evaluations.

Funder

Institute of Information 8 Communications Technology Planning 8 Evaluation

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference38 articles.

1. Is the relationship between stride length, frequency, and velocity influenced by running on a treadmill or overground;Bailey Joshua;International Journal of Exercise Science,2017

2. On the centre of mass motion in human walking

3. Camera Control in Computer Graphics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3