Affiliation:
1. Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), China, and Hefei University of Technology, China
Abstract
Multi-task learning has been widely applied to Alzheimer’s Disease (AD) studies due to its capability of simultaneously rating the disease severity (classification) and predicting corresponding clinical scores (regression). In this article, we propose a novel technique of Adaptive Multi-task Dual-Structured Learning, named AMDSL, by mutually exploring the dual manifold structure for the label and regression score of the disease data under joint classification and regression tasks, while learning an adaptive shared similarity measure and corresponding feature mapping among these two tasks. We encode both the reconstructed label representation and regression score adaptive to the ideal similarity measure on disease data to achieve the ideal performance on these two joint tasks. The alternating algorithm is proposed to optimize the above objective. We theoretically prove the convergence of the optimization algorithm. The superiority of AMDSL is experimentally validated under joint classification and regression as per various evaluation metrics against the most authoritative Alzheimer’s disease data.
Funder
National key R&D Program of China
National Nature Science Foundation of China
Anhui Provincial Natural Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献