Forecasting Trend of Coronavirus Disease 2019 using Multi-Task Weighted TSK Fuzzy System

Author:

Jiang Yizhang1ORCID,Gu Xiaoqing2ORCID,Hua Lei1ORCID,Li Kang1ORCID,Tao Yuwen1ORCID,Li Bo1ORCID

Affiliation:

1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China

2. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China

Abstract

Artificial intelligence– (AI) based fog/edge computing has become a promising paradigm for infectious disease. Various AI algorithms are embedded in cooperative fog/edge devices to construct medical Internet of Things environments, infectious disease forecast systems, smart health, and so on. However, these systems are usually done in isolation, which is called single-task learning. They do not consider the correlation and relationship between multiple/different tasks, so some common information in the model parameters or data characteristics is lost. In this study, each data center in fog/edge computing is considered as a task in the multi-task learning framework. In such a learning framework, a multi-task weighted Takagi-Sugeno-Kang (TSK) fuzzy system, called MW-TSKFS, is developed to forecast the trend of Coronavirus disease 2019 (COVID-19). MW-TSKFS provides a multi-task learning strategy for both antecedent and consequent parameters of fuzzy rules. First, a multi-task weighted fuzzy c-means clustering algorithm is developed for antecedent parameter learning, which extracts the public information among all tasks and the private information of each task. By sharing the public cluster centroid and public membership matrix, the differences of commonality and individuality can be further exploited. For consequent parameter learning of MW-TSKFS, a multi-task collaborative learning mechanism is developed based on ε-insensitive criterion and L2 norm penalty term, which can enhance the generalization and forecasting ability of the proposed fuzzy system. The experimental results on the real COVID-19 time series show that the forecasting tend model based on multi-task the weighted TSK fuzzy system has a high application value.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference30 articles.

1. Survey of applications, challenges and opportunities in fog computing

2. Fog Computing for the Internet of Things

3. Combination of pattern classifiers based on naive bayes and fuzzy integral method for biological signal applications;Akbarzadeh Omid;Curr. Sign. Transduct. Ther.,2020

4. Secure edge of things for smart healthcare surveillance framework;Alabdulatif Abdulatif;IEEE Access,2019

5. Trends in IoT based solutions for health care: Moving AI to the edge;Greco Luca;Pattern Recogn. Lett.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3