Affiliation:
1. ENSEEIHT-IRIT
2. CERFACS and Rutherford Appleton Laboratoy
3. ENSEEIHT-IRIT and LIP-ENS Lyon
4. NERSC-Lawrence Berkeley National Laboratory
Abstract
This paper provides a comprehensive study and comparison of two state-of-the-art direct solvers for large sparse sets of linear equations on large-scale distributed-memory computers. One is a multifrontal solver called MUMPS, the other is a supernodal solver called superLU. We describe the main algorithmic features of the two solvers and compare their performance characteristics with respect to uniprocessor speed, interprocessor communication, and memory requirements. For both solvers, preorderings for numerical stability and sparsity play an important role in achieving high parallel efficiency. We analyse the results with various ordering algorithms. Our performance analysis is based on data obtained from runs on a 512-processor Cray T3E using a set of matrices from real applications. We also use regular 3D grid problems to study the scalability of the two solvers.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献