Performance impact of precision reduction in sparse linear systems solvers

Author:

Zounon Mawussi12,Higham Nicholas J.1,Lucas Craig2,Tisseur Françoise1

Affiliation:

1. School of Mathematics, University of Manchester, Manchester, United Kingdom

2. The Numerical Algorithms Group, Manchester, Greater Manchester, United Kingdom

Abstract

It is well established that reduced precision arithmetic can be exploited to accelerate the solution of dense linear systems. Typical examples are mixed precision algorithms that reduce the execution time and the energy consumption of parallel solvers for dense linear systems by factorizing a matrix at a precision lower than the working precision. Much less is known about the efficiency of reduced precision in parallel solvers for sparse linear systems, and existing work focuses on single core experiments. We evaluate the benefits of using single precision arithmetic in solving a double precision sparse linear system using multiple cores. We consider both direct methods and iterative methods and we focus on using single precision for the key components of LU factorization and matrix–vector products. Our results show that the anticipated speedup of 2 over a double precision LU factorization is obtained only for the very largest of our test problems. We point out two key factors underlying the poor speedup. First, we find that single precision sparse LU factorization is prone to a severe loss of performance due to the intrusion of subnormal numbers. We identify a mechanism that allows cascading fill-ins to generate subnormal numbers and show that automatically flushing subnormals to zero avoids the performance penalties. The second factor is the lack of parallelism in the analysis and reordering phases of the solvers and the absence of floating-point arithmetic in these phases. For iterative solvers, we find that for the majority of the matrices computing or applying incomplete factorization preconditioners in single precision provides at best modest performance benefits compared with the use of double precision. We also find that using single precision for the matrix–vector product kernels provides an average speedup of 1.5 over double precision kernels. In both cases some form of refinement is needed to raise the single precision results to double precision accuracy, which will reduce performance gains.

Funder

Innovate UK

The Engineering and Physical Sciences Research Council

The Royal Society

Publisher

PeerJ

Subject

General Computer Science

Reference34 articles.

1. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic;Abdelfattah;International Journal of High Performance Computing Applications,2021

2. Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects;Agullo;Journal of Physics: Conference Series,2009

3. Data-driven mixed precision sparse matrix vector multiplication for GPUs;Ahmad;ACM Transactions on Architecture and Code Optimization,2019

4. Multifrontal parallel distributed symmetric and unsymmetric solvers;Amestoy;Computer Methods in Applied Mechanics and Engineering,2000

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3