Machine Learning Methods for Septic Shock Prediction
Author:
Affiliation:
1. College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL, USA
Publisher
ACM Press
Reference64 articles.
1. Deepak, C., and Bhat, S. 2014. Prediction of outcome in patients with sepsis using C-reactive protein & APACHE II scoring system. IOSR Journal of Dental and Medical Sciences.13, 3 (Mar. 2014), 17--20.
2. Henry, K., Hager, D., Pronovost, P., and Saria, S., 2015. A targeted real-time early warning score (TREWScore) for septic shock. Science Translational Medicine. 7, 299. DOI = 10.1126/scitranslmed.aab3719
3. Marty, P., et al. 2013. Lactate clearance for death prediction in severe sepsis or septic shock patients during the first 24 hours in Intensive Care Unit: an observational study. Annals of intensive care, 3, 3 (Feb. 2013), 1--7.
4. Prucha, M., Bellingan, G., and Zazula, R. Sepsis biomarkers. Clinica Chimica Acta. 440 (Feb. 2015), 97--103.
5. Lausevic, Z., and Lausevic, M. 2012. Early Detection of Sepsis, MOF and Outcome Prediction in Severely Traumatized Patients. In Sepsis - An Ongoing and Significant Challenge, 1st ed, L. Azevedo, Ed. InTech, Rijeka, Croatia, 159--170.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review;ICT Express;2023-12
2. Conditional Tabular Generative Adversarial Net for Enhancing Ensemble Classifiers in Sepsis Diagnosis;Applied Computational Intelligence and Soft Computing;2023-11-25
3. Data-driven decision support for individualised cardiovascular resuscitation in sepsis: a scoping review and primer for clinicians;2023-08-28
4. EARLY PREDICTION OF UNEXPECTED LATENT SHOCK IN THE EMERGENCY DEPARTMENT USING VITAL SIGNS;Shock;2023-07-29
5. An enhanced random forest approach using CoClust clustering: MIMIC-III and SMS spam collection application;Journal of Big Data;2023-03-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3