Conditional Tabular Generative Adversarial Net for Enhancing Ensemble Classifiers in Sepsis Diagnosis

Author:

Alfakeeh Ahmed1ORCID,Sharif Mhd Saeed2ORCID,Zorto Abin Daniel2,Pillonetto Thiago2

Affiliation:

1. Research and Consultation Institute, King AbdulAziz University, Jeddah, Saudi Arabia

2. School of Architecture Computing and Engineering (ACE), UEL, University Way, London E16 2RD, UK

Abstract

Antibiotic-resistant bacteria have proliferated at an alarming rate as a result of the extensive use of antibiotics and the paucity of new medication research. The possibility that an antibiotic-resistant bacterial infection would progress to sepsis is one of the major collateral problems affecting people with this condition. 31,000 lives were lost due to sepsis in England with costs about two billion pounds annually. This research aims to develop and evaluate several classification approaches to improve predicting sepsis and reduce the tendency of underdiagnosis in computer-aided predictive tools. This research employs medical datasets for patients diagnosed with sepsis, and it analyses the efficacy of ensemble machine learning techniques compared to nonensemble machine learning techniques and the significance of data balancing and conditional tabular generative adversarial nets for data augmentation in producing reliable diagnosis. The average F Score obtained by the nonensemble models trained in this paper is 0.83 compared to the ensemble techniques average of 0.94. Nonensemble techniques, such as Decision Tree, achieved an F score of 0.90, an AUC of 0.90, and an accuracy of 90%. Histogram-basedgradient boosting classification tree achieved an F score of 0.96, an AUC of 0.96, and an accuracy of 95%, surpassing the other models tested. Additionally, when compared to the current state-of-the-art sepsis prediction models, the models developed in this study demonstrated higher average performance in all metrics, indicating reduced bias and improved robustness through data balancing and conditional tabular generative adversarial nets for data augmentation. The study revealed that data balancing and augmentation on the ensemble machine learning algorithms boost the efficacy of clinical predictive models and can help clinics decide which data types are most important when examining patients and diagnosing sepsis early through intelligent human-machine interface.

Funder

Ministry of Education – Kingdom of Saudi Arabia

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3