1. Daniel Arp , Erwin Quiring , Feargus Pendlebury , Alexander Warnecke , Fabio Pierazzi , Christian Wressnegger , Lorenzo Cavallaro , and Konrad Rieck . 2022 . Dos and Don'ts of Machine Learning in Computer Security . In 31st USENIX Security Symposium (USENIX Security 22) . USENIX Association, Boston, MA. https://www.usenix.org/conference/usenixsecurity22/presentation/arp Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos and Don'ts of Machine Learning in Computer Security. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston, MA. https://www.usenix.org/conference/usenixsecurity22/presentation/arp
2. Saikat Chakraborty Rahul Krishna Yangruibo Ding and Baishakhi Ray. 2020. Deep Learning based Vulnerability Detection: Are We There Yet? arXiv:2009.07235 [cs.SE] Saikat Chakraborty Rahul Krishna Yangruibo Ding and Baishakhi Ray. 2020. Deep Learning based Vulnerability Detection: Are We There Yet? arXiv:2009.07235 [cs.SE]
3. Anomaly detection
4. The Delta Maintainability Model: Measuring Maintainability of Fine-Grained Code Changes
5. Kaize Ding Jundong Li Rohit Bhanushali and Huan Liu. 2019. Deep Anomaly Detection on Attributed Networks. 594--602. https://doi.org/10.1137/1.9781611975673. 67 10.1137/1.9781611975673