Unsupervised Heterogeneous Graph Neural Networks for One-Class Tasks: Exploring Early Fusion Operators

Author:

Gôlo Marcos Paulo SilvaORCID,De Moraes Junior Marcelo IsaiasORCID,Goularte RudineiORCID,Marcacini Ricardo MarcondesORCID

Abstract

Heterogeneous graphs are an essential structure that models real-world data through different types of nodes and relationships between them, including multimodality, which comprises different types of data such as text, image, and audio. Graph Neural Networks (GNNs) are a prominent graph representation learning method that takes advantage of the graph structure and its attributes that, when applied to the multimodal heterogeneous graph, learn a unique semantic space for the different modalities. Consequently, it allows multimodal fusion through simple operators such as sum, average, or multiplication, generating unified representations considering the supplementary and complementarity relationships between the modalities. In multimodal heterogeneous graphs, the labeling process tends to be even more costly due to the multiple modalities analyzed, in addition to the imbalance of classes inherent to some applications. In order to overcome these problems in applications that comprise a class of interest, One-Class Learning (OCL) is used. Given the lack of studies on multimodal early fusion in heterogeneous graphs for OCL tasks, we proposed a method based on unsupervised GNN for heterogeneous graphs and evaluated different early fusion operators. In this paper, we extend another work by evaluating the behavior of the main GNN convolutions in the method. We highlight that using operators such as average, addition, and subtraction were the best early fusion operators. In addition, GNN layers that do not use an attention mechanism performed better. In this way, we argue for heterogeneous graph neural networks in multimodal using early fusion simple operators instead of well-often-used concatenation and less complex convolutions.

Publisher

Sociedade Brasileira de Computacao - SB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3