Affiliation:
1. University of British Columbia, Vancouver, Canada
Abstract
Information visualization systems have traditionally followed a one-size-fits-all model, typically ignoring an individual user's needs, abilities, and preferences. However, recent research has indicated that visualization performance could be improved by adapting aspects of the visualization to the individual user. To this end, this article presents research aimed at supporting the design of novel user-adaptive visualization systems. In particular, we discuss results on using information on user eye gaze patterns while interacting with a given visualization to predict properties of the user's visualization task; the user's performance (in terms of predicted task completion time); and the user's individual cognitive abilities, such as perceptual speed, visual working memory, and verbal working memory. We provide a detailed analysis of different eye gaze feature sets, as well as over-time accuracies. We show that these predictions are significantly better than a baseline classifier even during the early stages of visualization usage. These findings are then discussed with a view to designing visualization systems that can adapt to the individual user in real time.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献