Towards Enhanced System Efficiency while Mitigating Row Hammer

Author:

Goswami Kaustav1,Banerjee Dip Sankar2,Das Shirshendu3

Affiliation:

1. Indian Institute of Information Technology Guwahati, India

2. Indian Institute of Technology Jodhpur, India

3. Indian Institute of Technology Ropar, India

Abstract

In recent years, DRAM-based main memories have become susceptible to the Row Hammer (RH) problem, which causes bits to flip in a row without accessing them directly. Frequent activation of a row, called an aggressor row , causes its adjacent rows’ ( victim ) bits to flip. The state-of-the-art solution is to refresh the victim rows explicitly to prevent bit flipping. There have been several proposals made to detect RH attacks. These include both probabilistic as well as deterministic counter-based methods. The technique of handling RH attacks, however, remains the same. In this work, we propose an efficient technique for handling the RH problem. We show that the mechanism is agnostic of the detection mechanism. Our RH handling technique omits the necessity of refreshing the victim rows. Instead, we use a small non-volatile Spin-Transfer Torque Magnetic Random Access Memory (STTRAM) that ensures no unnecessary refreshes of the victim rows on the DRAM device and thus allowing more time for normal applications in the same DRAM device. Our model relies on the migration of the aggressor rows. This accounts for removing blocking of the DRAM operations due to the refreshing of victim rows incurred in the previous solution. After extensive evaluation, we found that, compared to the conventional RH mitigation techniques, our model minimizes the blocking time of the memory that is imposed due to explicit refreshing by an average of 80.72% in the worst-case scenario and provides energy savings of about 15.82% on average, across different types of RH-based workloads. A lookup table is necessary to pinpoint the location of a particular row, which, when combined with the STTMRAM, limits the storage overhead to 0.39% of a 2 GB DRAM. Our proposed model prevents repeated refreshing of the same victim rows in different refreshing windows on the DRAM device and leads to an efficient RH handling technique.

Funder

Science and Engineering Research Board

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference39 articles.

1. Enabling a reliable STT-MRAM main memory simulation

2. The PARSEC benchmark suite

3. Emerging NVM: A survey on architectural integration and research challenges;Boukhobza Jalil;ACM Trans. Des. Autom. Electron. Syst.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WinDRAM: Weak rows as in‐DRAM cache;Concurrency and Computation: Practice and Experience;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3