Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte Carlo

Author:

Chalkis Apostolos1ORCID,Fisikopoulos Vissarion1ORCID,Papachristou Marios2ORCID,Tsigaridas Elias3ORCID

Affiliation:

1. National Kapodistrian University of Athens, Greece and GeomScale org, Greece

2. Cornell University, USA and GeomScale org, Greece

3. Inria Paris and Sorbonne Université, France and GeomScale org, Greece

Abstract

We introduce Reflective Hamiltonian Monte Carlo (ReHMC), an HMC-based algorithm to sample from a log-concave distribution restricted to a convex body. The random walk is based on incorporating reflections to the Hamiltonian dynamics such that the support of the target density is the convex body. We develop an efficient open source implementation of ReHMC and perform an experimental study on various high-dimensional datasets. The experiments suggest that ReHMC outperforms Hit-and-Run and Coordinate-Hit-and-Run regarding the time it needs to produce an independent sample, introducing practical truncated sampling in thousands of dimensions.

Funder

Cornell University Fellowship

A.G. Leventis Foundation

Gerondelis Foundation

ANR JCJC GALOP

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference94 articles.

1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). 265–283.

2. Hadi Mohasel Afshar and Justin Domke. 2015. Reflection, refraction, and Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems. 3007–3015.

3. Theoretical Numerical Analysis

4. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

5. A General Metric for Riemannian Manifold Hamiltonian Monte Carlo

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3