Understanding transportation modes based on GPS data for web applications

Author:

Zheng Yu1,Chen Yukun2,Li Quannan3,Xie Xing4,Ma Wei-Ying1

Affiliation:

1. Microsoft Research Asia, Haidian District, Beijing, China

2. Tsinghua University, Beijing, China

3. Huazhong University of Science and Technology, Wuhan, China

4. Microsoft Research Asia

Abstract

User mobility has given rise to a variety of Web applications, in which the global positioning system (GPS) plays many important roles in bridging between these applications and end users. As a kind of human behavior, transportation modes, such as walking and driving, can provide pervasive computing systems with more contextual information and enrich a user's mobility with informative knowledge. In this article, we report on an approach based on supervised learning to automatically infer users' transportation modes, including driving, walking, taking a bus and riding a bike, from raw GPS logs. Our approach consists of three parts: a change point-based segmentation method, an inference model and a graph-based post-processing algorithm. First, we propose a change point-based segmentation method to partition each GPS trajectory into separate segments of different transportation modes. Second, from each segment, we identify a set of sophisticated features, which are not affected by differing traffic conditions (e.g., a person's direction when in a car is constrained more by the road than any change in traffic conditions). Later, these features are fed to a generative inference model to classify the segments of different modes. Third, we conduct graph-based postprocessing to further improve the inference performance. This postprocessing algorithm considers both the commonsense constraints of the real world and typical user behaviors based on locations in a probabilistic manner. The advantages of our method over the related works include three aspects. (1) Our approach can effectively segment trajectories containing multiple transportation modes. (2) Our work mined the location constraints from user-generated GPS logs, while being independent of additional sensor data and map information like road networks and bus stops. (3) The model learned from the dataset of some users can be applied to infer GPS data from others. Using the GPS logs collected by 65 people over a period of 10 months, we evaluated our approach via a set of experiments. As a result, based on the change-point-based segmentation method and Decision Tree-based inference model, we achieved prediction accuracy greater than 71 percent. Further, using the graph-based post-processing algorithm, the performance attained a 4-percent enhancement.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 332 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HRNet: Differentially Private Hierarchical and Multi-Resolution Network for Human Mobility Data Synthesization;Proceedings of the VLDB Endowment;2024-07

2. Let's Speak Trajectories: A Vision to Use NLP Models for Trajectory Analysis Tasks;ACM Transactions on Spatial Algorithms and Systems;2024-06-30

3. Leveraging trajectory simplification for efficient map-matching on road network;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

4. A Survey of Machine Learning-Based Ride-Hailing Planning;IEEE Transactions on Intelligent Transportation Systems;2024-06

5. The actual impact of ride-splitting: An empirical study based on large-scale GPS data;Transport Policy;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3