Let's Speak Trajectories: A Vision to Use NLP Models for Trajectory Analysis Tasks

Author:

Musleh Mashaal1ORCID,Mokbel Mohamed F.2ORCID

Affiliation:

1. University of Minnesota Twin Cities, Minneapolis, United States

2. University of Minnesota, Minneapolis, United States

Abstract

The availability of trajectory data combined with various real-life practical applications has sparked the interest of the research community to design a plethora of algorithms for various trajectory analysis techniques. However, there is an apparent lack of full-fledged systems that provide the infrastructure support for trajectory analysis techniques, which hinders the applicability of most of the designed algorithms. Inspired by the tremendous success of the Bidirectional Encoder Representations from Transformers (BERT) deep learning model in solving various Natural Language Processing tasks, our vision is to have a BERT-like system for trajectory analysis tasks. We envision that in a few years, we will have such system where no one needs to worry again about each specific trajectory analysis operation. Whether it is trajectory imputation, similarity, clustering, or whatever, it would be one system that researchers, developers, and practitioners can deploy to get high accuracy for their trajectory operations. Our vision stands on a solid ground that trajectories in a space are highly analogous to statements in a language. We outline the challenges and the road to our vision. Exploratory results confirm the promise and possibility of our vision.

Funder

National Science Foundation (NSF), USA

Publisher

Association for Computing Machinery (ACM)

Reference158 articles.

1. ACM SIGSPATIAL Cup 2017. Retrieved from http://sigspatial2017.sigspatial.org/giscup2017/download

2. ST-Hadoop: a MapReduce framework for spatio-temporal data

3. Rakan Alseghayer. 2021. Racoon: Rapid contact tracing of moving objects using smart indexes. In MDM. 274–276.

4. Pedestrian-movement prediction based on mixed Markov-chain model

5. On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Trajectory Imputation using Simple Probabilistic Language Models;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3