Affiliation:
1. Oak Ridge National Laboratory, TN
2. Microsoft Corporation, WA
3. Advanced Micro Devices, Inc.
Abstract
Global Virtual Time (GVT) computation is a key determinant of the efficiency and runtime dynamics of Parallel Discrete Event Simulations (PDES), especially on large-scale parallel platforms. Here, three execution modes of a generalized GVT computation algorithm are studied on high-performance parallel computing systems: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on up to 216,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and nonsynthetic applications, and different lookahead values. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly coupled discrete event dynamics on massively parallel platforms.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modelling and Simulation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献