Active bridging

Author:

Alexander D. Scott1,Shaw Marianne1,Nettles Scott M.1,Smith Jonathan M.1

Affiliation:

1. CIS Department, University of Pennsylvania

Abstract

Active networks accelerate network evolution by permitting the network infrastructure to be programmable, on a per-user, per-packet, or other basis. This programmability must be balanced against the safety and security needs inherent in shared resources.This paper describes the design, implementation, and performance of a new type of network element, an Active Bridge. The active bridge can be reprogrammed "on the fly", with loadable modules called switchlets. To demonstrate the use of the active property, we incrementally extend what is initially a programmable buffered repeater with switchlets into a self-learning bridge, and then a bridge supporting spanning tree algorithms. To demonstrate the agility that active networking gives, we show how it is possible to upgrade a network from an "old" protocol to a "new" protocol on-the-fly. Moreover, we are able to take advantage of information unavailable to the implementors of either protocol to validate the new protocol and fall back to the old protocol if an error is detected. This shows that the Active Bridge can protect itself from some algorithmic failures in loadable modules.Our approach to safety and security favors static checking and prevention over dynamic checks when possible. We rely on strong type checking in the Caml language for the loadable module infrastructure, and achieve respectable performance. The prototype implementation on a Pentium-based HP Netserver LS running Linux with 100 Mbps Ethernet LANS achieves ttcp throughput of 16 Mbps between two PCs running Linux, compared with 76 Mbps unbridged. Measured frame rates are in the neighborhood of 1800 frames per second.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3