Affiliation:
1. University of Oxford
2. University of Rochester
3. Georgia Institute of Technology
Abstract
A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree Δ undergoes a phase transition that coincides with the statistical physics uniqueness/nonuniqueness phase transition on the infinite Δ-regular tree. Despite this clear picture for 2-spin systems, there is little known for multispin systems. We present the first analog of this in approximability results for multispin systems.
The main difficulty in previous inapproximability results was analyzing the behavior of the model on random Δ-regular bipartite graphs, which served as the gadget in the reduction. To this end, one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random Δ-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest.
For
k
-colorings we prove that for even
k
, in a tree nonuniqueness region (which corresponds to
k
< Δ) there is no FPRAS, unless NP = RP, to approximate the number of colorings for triangle-free Δ-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition.
Funder
National Science Foundation
European Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Reference25 articles.
1. Schur multipliers
2. N. G. de Bruijn. 1981. Asymptotic Methods in Analysis (3rd ed.). Dover Publications Inc. New York. xii + 200 pages. N. G. de Bruijn. 1981. Asymptotic Methods in Analysis (3rd ed.). Dover Publications Inc. New York. xii + 200 pages.
3. Improved inapproximability results for counting independent sets in the hard-core model
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献