Cost-Effective Online Trending Topic Detection and Popularity Prediction in Microblogging

Author:

Miao Zhongchen1,Chen Kai1,Fang Yi2,He Jianhua3,Zhou Yi1,Zhang Wenjun1,Zha Hongyuan4

Affiliation:

1. Shanghai Jiao Tong University, China

2. Santa Clara University, U.S.A.

3. Aston University, U.K.

4. Georgia Institute of Technology, U.S.A.

Abstract

Identifying topic trends on microblogging services such as Twitter and estimating those topics’ future popularity have great academic and business value, especially when the operations can be done in real time. For any third party, however, capturing and processing such huge volumes of real-time data in microblogs are almost infeasible tasks, as there always exist API (Application Program Interface) request limits, monitoring and computing budgets, as well as timeliness requirements. To deal with these challenges, we propose a cost-effective system framework with algorithms that can automatically select a subset of representative users in microblogging networks in offline, under given cost constraints. Then the proposed system can online monitor and utilize only these selected users’ real-time microposts to detect the overall trending topics and predict their future popularity among the whole microblogging network. Therefore, our proposed system framework is practical for real-time usage as it avoids the high cost in capturing and processing full real-time data, while not compromising detection and prediction performance under given cost constraints. Experiments with real microblogs dataset show that by tracking only 500 users out of 0.6 million users and processing no more than 30,000 microposts daily, about 92% trending topics could be detected and predicted by the proposed system and, on average, more than 10 hours earlier than they appear in official trends lists.

Funder

the 111 Program

National Key Research and Development Program of China

Shanghai Science and Technology Committees of Scientific Research Project

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3