Who will Win the Data Science Competition? Insights from KDD Cup 2019 and Beyond

Author:

Liu Hao1ORCID,Guo Qingyu1,Zhu Hengshu2,Zhuang Fuzhen3,Yang Shenwen4,Dou Dejing4,Xiong Hui1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong SAR, China

2. Baidu Talent Intelligence Center, Baidu Inc., Beijing, China

3. Institute of Artificial Intelligence, Beihang University and SKLSDE, School of Computer Science, Beihang University, Beijing

4. Baidu Inc., Beijing, China

Abstract

Data science competitions are becoming increasingly popular for enterprises collecting advanced innovative solutions and allowing contestants to sharpen their data science skills. Most existing studies about data science competitions have a focus on improving task-specific data science techniques, such as algorithm design and parameter tuning. However, little effort has been made to understand the data science competition itself. To this end, in this article, we shed light on the team’s competition performance, and investigate the team’s evolving performance in the crowd-sourcing competitive innovation context. Specifically, we first acquire and construct multi-sourced datasets of various data science competitions, including the KDD Cup 2019 machine learning competition and beyond. Then, we conduct an empirical analysis to identify and quantify a rich set of features that are significantly correlated with teams’ future performances. By leveraging team’s rank as a proxy, we observe “the stronger, the stronger” rule; that is, top-ranked teams tend to keep their advantages and dominate weaker teams for the rest of the competition. Our results also confirm that teams with diversified backgrounds tend to achieve better performances. After that, we formulate the team’s future rank prediction problem and propose the Multi-Task Representation Learning  (MTRL) framework to model both static features and dynamic features. Extensive experimental results on four real-world data science competitions demonstrate the team’s future performance can be well predicted by using MTRL. Finally, we envision our study will not only help competition organizers to understand the competition in a better way, but also provide strategic implications to contestants, such as guiding the team formation and designing the submission strategy.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3