A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix

Author:

Dadush Daniel1,Huiberts Sophie1,Natura Bento2,Végh László A.2

Affiliation:

1. CWI, Netherlands

2. London School of Economics and Political Science, UK

Funder

European Research Council

Publisher

ACM

Reference53 articles.

1. Log-barrier interior point methods are not strongly polynomial;Allamigeon Xavier;SIAM Journal on Applied Algebra and Geometry,2018

2. Sébastien Bubeck and Ronen Eldan. 2014. The entropic barrier: a simple and optimal universal self-concordant barrier. arXiv preprint arXiv:1412. 1587. Sébastien Bubeck and Ronen Eldan. 2014. The entropic barrier: a simple and optimal universal self-concordant barrier. arXiv preprint arXiv:1412. 1587.

3. Sergei Chubanov. 2014. A polynomial algorithm for linear optimization which is strongly polynomial under certain conditions on optimal solutions. ( 2014 ). http://www.optimization-online.org/DB_HTML/ 2014 /12/4710.html. Sergei Chubanov. 2014. A polynomial algorithm for linear optimization which is strongly polynomial under certain conditions on optimal solutions. ( 2014 ). http://www.optimization-online.org/DB_HTML/ 2014 /12/4710.html.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

2. A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix;Mathematical Programming;2023-04-29

3. An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem;Integer Programming and Combinatorial Optimization;2023

4. Minimizing Convex Functions with Rational Minimizers;Journal of the ACM;2022-12-19

5. Interior point methods are not worse than Simplex;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3