1. Z. Allen-Zhu , A. Garg , Y. Li , R. M. de Oliveira , and A. Wigderson . 2018. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing . In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018. ACM, 172–181 . Z. Allen-Zhu, A. Garg, Y. Li, R. M. de Oliveira, and A. Wigderson. 2018. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018. ACM, 172–181.
2. Learning from noisy examples
3. S. Artstein-Avidan H. Kaplan and M. Sharir. 2020. On Radial Isotropic Position: Theory and Algorithms. CoRR abs/2005.04918 (2020) arxiv:2005.04918. arxiv:2005.04918 S. Artstein-Avidan H. Kaplan and M. Sharir. 2020. On Radial Isotropic Position: Theory and Algorithms. CoRR abs/2005.04918 (2020) arxiv:2005.04918. arxiv:2005.04918
4. F. Barthe . 1998. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathematicae, 134 ( 1998 ), 335–361. F. Barthe. 1998. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathematicae, 134 (1998), 335–361.
5. Relaxation, New Combinatorial and Polynomial Algorithms for the Linear Feasibility Problem