Group-Based Recurrent Neural Networks for POI Recommendation

Author:

Li Guohui1,Chen Qi1,Zheng Bolong1ORCID,Yin Hongzhi2,Nguyen Quoc Viet Hung3,Zhou Xiaofang2

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

2. University of Queensland, Brisbane, Australia

3. Griffith University, Gold Coast, Australia

Abstract

With the development of mobile Internet, many location-based services have accumulated a large amount of data that can be used for point-of-interest (POI) recommendation. However, there are still challenges in developing an unified framework to incorporate multiple factors associated with both POIs and users due to the heterogeneity and implicity of this information. To alleviate the problem, this work proposes a novel group-based method for POI recommendation jointly considering the reviews, categories, and geographical locations, called the Group-based Temporal Sentiment-Aspect-Region Recurrent Neural Network (GTSAR-RNN). We divide the users into different groups and then train an individual RNN for each group with the goal of improving its pertinence. In GTSAR-RNN, we consider not only the effects of temporal and geographical contexts but also the users’ sentimental opinions on locations. Experimental results show that GTSAR-RNN acquires significant improvements over the baseline methods on real datasets.

Funder

NSFC

Fundamental Research Funds for the Central Universities HUST

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Dzmitry Bahdanau Kyunghyun Cho and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473. Dzmitry Bahdanau Kyunghyun Cho and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473.

2. Mining significant semantic locations from GPS data

3. A Unified Point-of-Interest Recommendation Framework in Location-Based Social Networks

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3