ARTEMIS: a Context-Aware Recommendation System with Crowding Forecaster for the Touristic Domain

Author:

Migliorini SaraORCID,Vecchia Anna DallaORCID,Belussi AlbertoORCID,Quintarelli ElisaORCID

Abstract

AbstractRecommendation systems are becoming an invaluable assistant not only for users, who may be disoriented in the presence of a huge number of different alternatives, but also for service providers or sellers, who would like to be able to guide the choice of customers toward particular items with specific characteristics. This influence capability can be particularly useful in the tourism domain, where the need to manage the industry in a more sustainable way and the ability to predict and control the level of crowding of PoIs (Points of Interest) have become more pressing in recent years. In this paper, we study the role of contextual information in determining both PoI occupations and user preferences, and we explore how machine learning and deep learning techniques can help produce good recommendations for users by enriching historical information with its contextual counterpart. As a result, we propose the architecture of ARTEMIS, a context-Aware Recommender sysTEM wIth crowding forecaSting, able to learn and forecast user preferences and occupation levels based on historical contextual features. Throughout the paper, we refer to a real-world application scenario regarding the tourist visits performed in Verona, a municipality in Northern Italy, between 2014 and 2019.

Funder

Università degli Studi di Verona

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Abadi, M., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

2. Adomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In Recommender Systems Handbook (pp. 191–226).

3. Alvarez-Lozano, J., García-Macías, J. A., & Chávez, E. (2015). Crowd location forecasting at points of interest. Int. J. Ad Hoc Ubiquitous Comput., 18(4), 191–204.

4. Belussi, A., Cinelli, A., Dalla Vecchia, A., Migliorini, S., Quaresmini, M., & Quintarelli, E. (2022). Forecasting POI occupation with contextual machine learning. In Proc. of the 26th European Conference on Advances in Databases and Information Systems, ADBIS (pp. 361–376).

5. Bollenbach, J., Neubig, S., Hein, A., Keller, R., & Krcmar, H. (2022). Using machine learning to predict POI occupancy to reduce overcrowding. In D. Demmler, D. Krupka, & H. Federrath (Eds.), 52. Jahrestagung der Gesellschaft für Informatik, INFORMATIK 2022, Informatik in den Naturwissenschaften, 26. - 30. September 2022, Hamburg, volume P-326 of LNI (pp. 393–408). Gesellschaft für Informatik, Bonn.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3