Intelligent System of Game-Theory-Based Decision Making in Smart Sports Industry

Author:

Bhatia Munish1ORCID

Affiliation:

1. Lovely Professional University, India

Abstract

Internet of Things (IoT) technology backed by Artificial Intelligence (AI) techniques has been increasingly utilized for the realization of the Industry 4.0 vision. Conspicuously, this work provides a novel notion of the smart sports industry for provisioning efficient services in the sports arena. Specifically, an IoT-inspired framework has been proposed for real-time analysis of athlete performance. IoT data is utilized to quantify athlete performance in the terms of probability parameters of Probabilistic Measure of Performance (PMP) and Level of Performance Measure (LoPM). Moreover, a two-player game-theory-based mathematical framework has been presented for efficient decision modeling by the monitoring officials. The presented model is validated experimentally by deployment in District Sports Academy (DSA) for 60 days over four players. Based on the comparative analysis with state-of-the-art decision-modeling approaches, the proposed model acquired enhanced performance values in terms of Temporal Delay, Classification Efficiency, Statistical Efficacy, Correlation Analysis, and Reliability.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference35 articles.

1. Internet of Things (IoT): A vision, architectural elements, and future directions;Gubbi Jayavardhana;Future Generation Computer Systems,2013

2. Accurate detection of sitting posture activities in a secure IoT based assisted living environment;Tariq Muhammad;Future Generation Computer Systems,2019

3. Industry 4.0: A survey on technologies, applications and open research issues;Lu Yang;Journal of Industrial Information Integration,2017

4. Building edge intelligence for online activity recognition in service-oriented IoT systems;Huang Zhenqiu;Future Generation Computer Systems,2018

5. Quantum-based predictive fog scheduler for IoT applications;Bhatia Munish;Computers in Industry,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3