Real-Time Reliability Monitoring on Edge Computing: a Systematic Mapping

Author:

Diván Mario José,Shchemelinin Dmitry,Carranza Marcos E.,Martinez-Spessot Cesar Ignacio,Buinevich Mikhail

Abstract

Scenario: System reliability monitoring focuses on determining the level at which the system works as expected (under certain conditions and over time) based on requirements. The edge computing environment is heterogeneous and distributed. It may lack central control due to the scope, number, and volume of stakeholders. Objective: To identify and characterize the Real-time System Reliability Monitoring strategies that have considered Artificial Intelligence models for supporting decision-making processes. Methodology: An analysis based on the Systematic Mapping Study was performed on December 14, 2022. The IEEE and Scopus databases were considered in the exploration. Results: 50 articles addressing the subject between 2013 and 2022 with growing interest. The core use of this technology is related to networking and health areas, articulating Body sensor networks or data policies management (collecting, routing, transmission, and workload management) with edge computing. Conclusions: Real-time Reliability Monitoring in edge computing is ongoing and still nascent. It lacks standards but has taken importance and interest in the last two years. Most articles focused on Push-based data collection methods for supporting centralized decision-making strategies. Additionally, to networking and health, it concentrated and deployed on industrial and environmental monitoring. However, there are multiple opportunities and paths to walk to improve it. E.g., data interoperability, federated and collaborative decision-making models, formalization of the experimental design for measurement process, data sovereignty, organizational memory to capitalize previous knowledge (and experiences), calibration and recalibration strategies for data sources.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3