A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems

Author:

Garrett C. Kristopher1,Bai Zhaojun2,Li Ren-Cang3

Affiliation:

1. Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, NM

2. Department of Computer Science and Department of Mathematics, University of California, Davis, CA

3. Department of Mathematics, University of Texas at Arlington, Arlington, TX

Abstract

A variation of Kublanovskaya's nonlinear QR method for solving banded nonlinear eigenvalue problems is presented in this article. The new method is iterative and specifically designed for problems too large to use dense linear algebra techniques. For the unstructurally banded nonlinear eigenvalue problem, a new data structure is used for storing the matrices to keep memory and computational costs low. In addition, an algorithm is presented for computing several nearby nonlinear eigenvalues to already-computed ones. Finally, numerical examples are given to show the efficacy of the new methods, and the source code has been made publicly available.

Funder

NSF

Laboratory Directed Research and Development Program of Oak Ridge National Laboratory

UT-Battelle, LLC for the U. S. Department of Energy

Research Gift Grant from Intel Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rational‐Chebyshev projection method for nonlinear eigenvalue problems;Numerical Linear Algebra with Applications;2024-08-08

2. A survey on variational characterizations for nonlinear eigenvalue problems;ETNA - Electronic Transactions on Numerical Analysis;2021

3. Stability test and dominant eigenvalues computation for second-order linear systems with multiple time-delays using receptance method;Mechanical Systems and Signal Processing;2020-03

4. Broyden's Method for Nonlinear Eigenproblems;SIAM Journal on Scientific Computing;2019-01

5. Solution of a Nonlinear Eigenvalue Problem Using Signed Singular Values;East Asian Journal on Applied Mathematics;2017-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3