Affiliation:
1. Department of Computer Science and Engineering University of Minnesota Twin Cities Minnesota USA
Abstract
AbstractThis article describes a projection method based on a combination of rational and polynomial approximations for efficiently solving large nonlinear eigenvalue problems. In a first stage the nonlinear matrix function under consideration is approximated by a matrix polynomial in . The error resulting from this polynomial approximation is in turn approximated by rational functions with the help of the Cauchy integral formula. The two approximations are combined and a linearization is performed. A key ingredient of the proposed approach is a projection method that uses subspaces spanned by vectors of the same dimension as that of the original problem instead of that of the linearized problem. A procedure is also presented to automatically select shifts and to partition the region of interest into a few subregions. This allows to subdivide the problem into smaller subproblems that are solved independently. The accuracy of the proposed method is theoretically analyzed and its performance is illustrated with a few test problems that have been discussed in the literature.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Editorial;Numerical Linear Algebra with Applications;2024-09-12