Electric Vehicle Optimized Charge and Drive Management

Author:

Vatanparvar Korosh1,Faruque Mohammad Abdullah Al1

Affiliation:

1. University of California, Irvine

Abstract

Electric vehicles (EVs) have been considered as a solution to the environmental issues caused by transportation, such as air pollution and greenhouse gas emission. However, limited energy capacity, scarce EV supercharging stations, and long recharging time have brought anxiety to drivers who use EVs as their main mean of transportation. Furthermore, EV owners need to deal with a huge battery replacement cost when the battery capacity degrades. Yet in-house EV chargers affect the pattern of the power grid load, which is not favorable to the utilities. The driving route, departure/arrival time of daily trips, and electricity price influence the EV energy consumption, battery lifetime, electricity cost, and EV charger load on the power grid. The EV driving range and battery lifetime issues have been addressed by battery management systems and route optimization methodologies. However, in this article, we are proposing an optimized charge and drive management (OCDM) methodology that selects the optimal driving route, schedules daily trips, and optimizes the EV charging process while considering the driver’s timing preference. Our methodology will improve the EV driving range, extend the battery lifetime, reduce the recharging cost, and diminish the influence of EV chargers on the power grid. The performance of our methodology compared to the state of the art have been analyzed by experimenting on three benchmark EVs and three drivers. Our methodology has decreased EV energy consumption by 27%, improved the battery lifetime by 24.8%, reduced the electricity cost by 35%, and diminished the power grid peak load by 17% while increasing less than 20 minutes of daily driving time. Moreover, the scalability of our OCDM methodology for different parameters (e.g., time resolution and multiday cycles) in terms of execution time and memory usage has been analyzed.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3