State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance

Author:

Sun Zhongxian1,He Weilin1,Wang Junlei1,He Xin12

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Battery state of health (SOH), which is a crucial parameter of the battery management system, reflects the rate of performance degradation and the aging level of lithium-ion batteries (LIBs) during operation. However, traditional machine learning models face challenges in accurately diagnosing battery SOH in complex application scenarios. Hence, we developed a deep learning framework for battery SOH estimation without prior knowledge of the degradation in battery capacity. Our framework incorporates a series of deep neural networks (DNNs) that utilize the direct current internal resistance (DCIR) feature to estimate the SOH. The correlation of the DCIR feature with the fade in capacity is quantified as strong under various conditions using Pearson correlation coefficients. We utilize the K-fold cross-validation method to select the hyperparameters in the DNN models and the optimal hyperparameter conditions compared with machine learning models with significant advantages and reliable prediction accuracies. The proposed algorithm is subjected to robustness validation, and the experimental results demonstrate that the model achieves reliable precision, with a mean absolute error (MAE) less than 0.768% and a root mean square error (RMSE) less than 1.185%, even when LIBs are subjected to varying application scenarios. Our study highlights the superiority and reliability of combining DNNs with DCIR features for battery SOH estimation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3