A High Throughput STR-based TRNG by Jitter Precise Quantization Superposing

Author:

Zhang Yuan1ORCID,Zhang Jiliang1ORCID

Affiliation:

1. Hunan University, China

Abstract

With the rapid development of integrated circuits and the continuous progress of computing capability, higher demands have been placed on the security and speed of data encryption in security systems. As a basic hardware security primitive, the true random number generator (TRNG) plays an important role in the encryption system, which requires higher throughput and randomness with lower hardware overhead. However, the throughput of TRNG is related to the entropy source’s quality and the randomness extraction methodology. To quantify the randomness of the entropy source with higher efficiency and quality, we utilize the independent jitter of the self-timed ring (STR) to generate original entropy and propose a high throughput jitter-based TRNG which can extract random information at the pulse of oscillation signal by jitter precise quantization superposing and random oscillation sampling. The proposed TRNG has been implemented on Artix-7 and Virtex-6 FPGAs. The generated true random number successfully passes the NIST SP800-22 and NIST SP800-90B tests while also exhibiting a minimum entropy greater than 0.9947. The most prominent superiority of our proposed TRNG is that it achieves a high throughput of 330 Mbps with an ultra-low hardware overhead of only 35 LUTs and 12 DFFs.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3