The Shoutcasters, the Game Enthusiasts, and the AI: Foraging for Explanations of Real-time Strategy Players

Author:

Penney Sean1,Dodge Jonathan1,Anderson Andrew1ORCID,Hilderbrand Claudia1,Simpson Logan1,Burnett Margaret1

Affiliation:

1. Oregon State University, Corvallis, USA

Abstract

Assessing and understanding intelligent agents is a difficult task for users who lack an AI background. “Explainable AI” (XAI) aims to address this problem, but what should be in an explanation? One route toward answering this question is to turn to theories of how humans try to obtain information they seek. Information Foraging Theory (IFT) is one such theory. In this article, we present a series of studies 1 using IFT: the first investigates how expert explainers supply explanations in the RTS domain, the second investigates what explanations domain experts demand from agents in the RTS domain, and the last focuses on how both populations try to explain a state-of-the-art AI. Our results show that RTS environments like StarCraft offer so many options that change so rapidly, foraging tends to be very costly. Ways foragers attempted to manage such costs included “satisficing” approaches to reduce their cognitive load, such as focusing more on What information than on Why information, strategic use of language to communicate a lot of nuanced information in a few words, and optimizing their environment when possible to make their most valuable information patches readily available. Further, when a real AI entered the picture, even very experienced domain experts had difficulty understanding and judging some of the AI’s unconventional behaviors. Finally, our results reveal ways Information Foraging Theory can inform future XAI interactive explanation environments, and also how XAI can inform IFT.

Funder

DARPA

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Reference77 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning About Explainable AI with Very Little Programming;Innovative Practices in Teaching Information Sciences and Technology;2024

2. Finding AI’s Faults with AAR/AI: An Empirical Study;ACM Transactions on Interactive Intelligent Systems;2022-03-04

3. “Why did my AI agent lose?”: Visual Analytics for Scaling Up After-Action Review;2021 IEEE Visualization Conference (VIS);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3