1. Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., & Kankanhalli, M. (2018). Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Vol. 582).
2. ACM. (2018). Acm code of ethics and professional conduct [Last Accessed: March 16 2024]. https://www.acm.org/code-of-ethics
3. Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., KikinGil, R., & Horvitz, E. (2019). Guidelines for human-AI interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13). https://doi.org/10.1145/3290605.3300233
4. Anderson, A., Dodge, J., Sadarangani, A., Juozapaitis, Z., Newman, E., Irvine, J., Chattopadhyay, S., Olson, M., Fern, A., & Burnett, M. (2020). Mental models of mere mortals with explanations of reinforcement learning. ACM Transactions on Interactive Intelligent Systems, 10 (2), 1–37. https://doi.org/10.1145/3366485
5. Arya, V., Bellamy, R. K. E., Chen, P.-Y., Dhurandhar, A., Hind, M., Hoffman, S. C., Houde, S., Liao, Q. V., Luss, R., Mojsilović, A., Mourad, S., Pedemonte, P., Raghavendra, R., Richards, J., Sattigeri, P., Shanmugam, K., Singh, M., Varshney, K. R.,Wei, D., & Zhang, Y. (2019). One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. https://arxiv.org/abs/1909.03012